"""V2 Evaluation Interface."""
from __future__ import annotations
import asyncio
import concurrent.futures as cf
import datetime
import logging
import pathlib
import uuid
from typing import (
TYPE_CHECKING,
Any,
AsyncIterable,
AsyncIterator,
Awaitable,
Callable,
Dict,
Iterable,
List,
Optional,
Sequence,
TypeVar,
Union,
cast,
)
import langsmith
from langsmith import run_helpers as rh
from langsmith import run_trees, schemas
from langsmith import run_trees as rt
from langsmith import utils as ls_utils
from langsmith._internal import _aiter as aitertools
from langsmith._internal._beta_decorator import _warn_once
from langsmith.evaluation._runner import (
AEVALUATOR_T,
DATA_T,
EVALUATOR_T,
ExperimentResultRow,
_ExperimentManagerMixin,
_extract_feedback_keys,
_ForwardResults,
_is_langchain_runnable,
_load_examples_map,
_load_experiment,
_load_tqdm,
_load_traces,
_resolve_data,
_resolve_evaluators,
_resolve_experiment,
_to_pandas,
_wrap_summary_evaluators,
)
from langsmith.evaluation.evaluator import (
SUMMARY_EVALUATOR_T,
EvaluationResult,
EvaluationResults,
RunEvaluator,
)
if TYPE_CHECKING:
import pandas as pd
DataFrame = pd.DataFrame
else:
DataFrame = Any
logger = logging.getLogger(__name__)
ATARGET_T = Callable[[dict], Awaitable[dict]]
[docs]async def aevaluate(
target: Union[ATARGET_T, AsyncIterable[dict]],
/,
data: Union[DATA_T, AsyncIterable[schemas.Example], Iterable[schemas.Example]],
evaluators: Optional[Sequence[Union[EVALUATOR_T, AEVALUATOR_T]]] = None,
summary_evaluators: Optional[Sequence[SUMMARY_EVALUATOR_T]] = None,
metadata: Optional[dict] = None,
experiment_prefix: Optional[str] = None,
description: Optional[str] = None,
max_concurrency: Optional[int] = None,
num_repetitions: int = 1,
client: Optional[langsmith.Client] = None,
blocking: bool = True,
experiment: Optional[Union[schemas.TracerSession, str, uuid.UUID]] = None,
upload_results: bool = True,
) -> AsyncExperimentResults:
r"""Evaluate an async target system or function on a given dataset.
Args:
target (Union[AsyncCallable[[dict], dict], AsyncIterable[dict]]): The async target system or function to evaluate.
data (Union[DATA_T, AsyncIterable[schemas.Example]]): The dataset to evaluate on. Can be a dataset name, a list of
examples, an async generator of examples, or an async iterable of examples.
evaluators (Optional[Sequence[EVALUATOR_T]]): A list of evaluators to run
on each example. Defaults to None.
summary_evaluators (Optional[Sequence[SUMMARY_EVALUATOR_T]]): A list of summary
evaluators to run on the entire dataset. Defaults to None.
metadata (Optional[dict]): Metadata to attach to the experiment.
Defaults to None.
experiment_prefix (Optional[str]): A prefix to provide for your experiment name.
Defaults to None.
description (Optional[str]): A description of the experiment.
max_concurrency (Optional[int]): The maximum number of concurrent
evaluations to run. Defaults to None.
num_repetitions (int): The number of times to run the evaluation.
Each item in the dataset will be run and evaluated this many times.
Defaults to 1.
client (Optional[langsmith.Client]): The LangSmith client to use.
Defaults to None.
blocking (bool): Whether to block until the evaluation is complete.
Defaults to True.
experiment (Optional[schemas.TracerSession]): An existing experiment to
extend. If provided, experiment_prefix is ignored. For advanced
usage only.
Returns:
AsyncIterator[ExperimentResultRow]: An async iterator over the experiment results.
Environment:
- LANGSMITH_TEST_CACHE: If set, API calls will be cached to disk to save time and
cost during testing. Recommended to commit the cache files to your repository
for faster CI/CD runs.
Requires the 'langsmith[vcr]' package to be installed.
Examples:
>>> from typing import Sequence
>>> from langsmith import Client, aevaluate
>>> from langsmith.schemas import Example, Run
>>> client = Client()
>>> dataset = client.clone_public_dataset(
... "https://smith.langchain.com/public/419dcab2-1d66-4b94-8901-0357ead390df/d"
... )
>>> dataset_name = "Evaluate Examples"
Basic usage:
>>> def accuracy(run: Run, example: Example):
... # Row-level evaluator for accuracy.
... pred = run.outputs["output"]
... expected = example.outputs["answer"]
... return {"score": expected.lower() == pred.lower()}
>>> def precision(runs: Sequence[Run], examples: Sequence[Example]):
... # Experiment-level evaluator for precision.
... # TP / (TP + FP)
... predictions = [run.outputs["output"].lower() for run in runs]
... expected = [example.outputs["answer"].lower() for example in examples]
... # yes and no are the only possible answers
... tp = sum([p == e for p, e in zip(predictions, expected) if p == "yes"])
... fp = sum([p == "yes" and e == "no" for p, e in zip(predictions, expected)])
... return {"score": tp / (tp + fp)}
>>> import asyncio
>>> async def apredict(inputs: dict) -> dict:
... # This can be any async function or just an API call to your app.
... await asyncio.sleep(0.1)
... return {"output": "Yes"}
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... evaluators=[accuracy],
... summary_evaluators=[precision],
... experiment_prefix="My Experiment",
... description="Evaluate the accuracy of the model asynchronously.",
... metadata={
... "my-prompt-version": "abcd-1234",
... },
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
Evaluating over only a subset of the examples using an async generator:
>>> async def example_generator():
... examples = client.list_examples(dataset_name=dataset_name, limit=5)
... for example in examples:
... yield example
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=example_generator(),
... evaluators=[accuracy],
... summary_evaluators=[precision],
... experiment_prefix="My Subset Experiment",
... description="Evaluate a subset of examples asynchronously.",
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
Streaming each prediction to more easily + eagerly debug.
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... evaluators=[accuracy],
... summary_evaluators=[precision],
... experiment_prefix="My Streaming Experiment",
... description="Streaming predictions for debugging.",
... blocking=False,
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
>>> async def aenumerate(iterable):
... async for elem in iterable:
... print(elem)
>>> asyncio.run(aenumerate(results))
Running without concurrency:
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... evaluators=[accuracy],
... summary_evaluators=[precision],
... experiment_prefix="My Experiment Without Concurrency",
... description="This was run without concurrency.",
... max_concurrency=0,
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
Using Async evaluators:
>>> async def helpfulness(run: Run, example: Example):
... # Row-level evaluator for helpfulness.
... await asyncio.sleep(5) # Replace with your LLM API call
... return {"score": run.outputs["output"] == "Yes"}
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... evaluators=[helpfulness],
... summary_evaluators=[precision],
... experiment_prefix="My Helpful Experiment",
... description="Applying async evaluators example.",
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
""" # noqa: E501
if not upload_results:
_warn_once("'upload_results' parameter is in beta.")
if experiment and experiment_prefix:
raise ValueError(
"Expected at most one of 'experiment' or 'experiment_prefix',"
" but both were provided. "
f"Got: experiment={experiment}, experiment_prefix={experiment_prefix}"
)
return await _aevaluate(
target,
data=data,
evaluators=evaluators,
summary_evaluators=summary_evaluators,
metadata=metadata,
experiment_prefix=experiment_prefix,
description=description,
max_concurrency=max_concurrency,
num_repetitions=num_repetitions,
client=client,
blocking=blocking,
experiment=experiment,
upload_results=upload_results,
)
[docs]async def aevaluate_existing(
experiment: Union[str, uuid.UUID, schemas.TracerSession],
/,
evaluators: Optional[Sequence[Union[EVALUATOR_T, AEVALUATOR_T]]] = None,
summary_evaluators: Optional[Sequence[SUMMARY_EVALUATOR_T]] = None,
metadata: Optional[dict] = None,
max_concurrency: Optional[int] = None,
client: Optional[langsmith.Client] = None,
load_nested: bool = False,
blocking: bool = True,
) -> AsyncIterator[ExperimentResultRow]:
r"""Evaluate existing experiment runs asynchronously.
Args:
experiment (Union[str, uuid.UUID]): The identifier of the experiment to evaluate.
evaluators (Optional[Sequence[EVALUATOR_T]]): Optional sequence of evaluators to use for individual run evaluation.
summary_evaluators (Optional[Sequence[SUMMARY_EVALUATOR_T]]): Optional sequence of evaluators
to apply over the entire dataset.
metadata (Optional[dict]): Optional metadata to include in the evaluation results.
max_concurrency (Optional[int]): Optional maximum number of concurrent evaluations.
client (Optional[langsmith.Client]): Optional Langsmith client to use for evaluation.
load_nested: Whether to load all child runs for the experiment.
Default is to only load the top-level root runs.
blocking (bool): Whether to block until evaluation is complete.
Returns:
AsyncIterator[ExperimentResultRow]: An async iterator over the experiment results.
Examples:
Define your evaluators
>>> from typing import Sequence
>>> from langsmith.schemas import Example, Run
>>> def accuracy(run: Run, example: Example):
... # Row-level evaluator for accuracy.
... pred = run.outputs["output"]
... expected = example.outputs["answer"]
... return {"score": expected.lower() == pred.lower()}
>>> def precision(runs: Sequence[Run], examples: Sequence[Example]):
... # Experiment-level evaluator for precision.
... # TP / (TP + FP)
... predictions = [run.outputs["output"].lower() for run in runs]
... expected = [example.outputs["answer"].lower() for example in examples]
... # yes and no are the only possible answers
... tp = sum([p == e for p, e in zip(predictions, expected) if p == "yes"])
... fp = sum([p == "yes" and e == "no" for p, e in zip(predictions, expected)])
... return {"score": tp / (tp + fp)}
Load the experiment and run the evaluation.
>>> from langsmith import aevaluate, aevaluate_existing
>>> dataset_name = "Evaluate Examples"
>>> async def apredict(inputs: dict) -> dict:
... # This can be any async function or just an API call to your app.
... await asyncio.sleep(0.1)
... return {"output": "Yes"}
>>> # First run inference on the dataset
... results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
Then evaluate the results
>>> experiment_name = "My Experiment:64e6e91" # Or manually specify
>>> results = asyncio.run(
... aevaluate_existing(
... experiment_name,
... evaluators=[accuracy],
... summary_evaluators=[precision],
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
""" # noqa: E501
client = client or run_trees.get_cached_client()
project = (
experiment
if isinstance(experiment, schemas.TracerSession)
else (await aitertools.aio_to_thread(_load_experiment, experiment, client))
)
runs = await aitertools.aio_to_thread(
_load_traces, experiment, client, load_nested=load_nested
)
data_map = await aitertools.aio_to_thread(_load_examples_map, client, project)
data = [data_map[run.reference_example_id] for run in runs]
return await _aevaluate(
runs,
data=data,
evaluators=evaluators,
summary_evaluators=summary_evaluators,
metadata=metadata,
max_concurrency=max_concurrency,
client=client,
blocking=blocking,
experiment=project,
)
async def _aevaluate(
target: Union[ATARGET_T, AsyncIterable[dict], Iterable[schemas.Run]],
/,
data: Union[DATA_T, AsyncIterable[schemas.Example]],
evaluators: Optional[Sequence[Union[EVALUATOR_T, AEVALUATOR_T]]] = None,
summary_evaluators: Optional[Sequence[SUMMARY_EVALUATOR_T]] = None,
metadata: Optional[dict] = None,
experiment_prefix: Optional[str] = None,
description: Optional[str] = None,
max_concurrency: Optional[int] = None,
num_repetitions: int = 1,
client: Optional[langsmith.Client] = None,
blocking: bool = True,
experiment: Optional[Union[schemas.TracerSession, str, uuid.UUID]] = None,
upload_results: bool = True,
) -> AsyncExperimentResults:
is_async_target = (
asyncio.iscoroutinefunction(target)
or (hasattr(target, "__aiter__") and asyncio.iscoroutine(target.__aiter__()))
or _is_langchain_runnable(target)
)
client = client or rt.get_cached_client()
runs = None if is_async_target else cast(Iterable[schemas.Run], target)
experiment_, runs = await aitertools.aio_to_thread(
_resolve_experiment,
experiment,
runs,
client,
)
manager = await _AsyncExperimentManager(
data,
client=client,
metadata=metadata,
experiment=experiment_ or experiment_prefix,
description=description,
num_repetitions=num_repetitions,
runs=runs,
upload_results=upload_results,
).astart()
cache_dir = ls_utils.get_cache_dir(None)
if cache_dir is not None:
dsid = await manager.get_dataset_id()
cache_path = pathlib.Path(cache_dir) / f"{dsid}.yaml"
else:
cache_path = None
with ls_utils.with_optional_cache(cache_path, ignore_hosts=[client.api_url]):
if is_async_target:
manager = await manager.awith_predictions(
cast(ATARGET_T, target), max_concurrency=max_concurrency
)
if evaluators:
manager = await manager.awith_evaluators(
evaluators, max_concurrency=max_concurrency
)
if summary_evaluators:
manager = await manager.awith_summary_evaluators(summary_evaluators)
results = AsyncExperimentResults(manager)
if blocking:
await results.wait()
return results
class _AsyncExperimentManager(_ExperimentManagerMixin):
"""Manage the execution of experiments asynchronously.
Supports lazily running predictions and evaluations in parallel to facilitate
result streaming and early debugging.
Args:
data (DATA_T): The data used for the experiment. Can be a dataset name or ID OR
a generator of examples.
runs (Optional[Iterable[schemas.Run]]): The runs associated with the experiment
predictions.
experiment (Optional[schemas.TracerSession]): The tracer session
associated with the experiment.
experiment_prefix (Optional[str]): The prefix for the experiment name.
description (Optional[str]): The description for the experiment.
metadata (Optional[dict]): Additional metadata for the experiment.
client (Optional[langsmith.Client]): The Langsmith client used for
the experiment.
evaluation_results (Optional[Iterable[EvaluationResults]]): The evaluation
sresults for the experiment.
summary_results (Optional[Iterable[EvaluationResults]]): The aggregate results
for the experiment.
"""
def __init__(
self,
data: Union[DATA_T, AsyncIterable[schemas.Example]],
/,
experiment: Optional[Union[schemas.TracerSession, str]] = None,
metadata: Optional[dict] = None,
runs: Optional[Union[Iterable[schemas.Run], AsyncIterable[schemas.Run]]] = None,
client: Optional[langsmith.Client] = None,
evaluation_results: Optional[AsyncIterable[EvaluationResults]] = None,
summary_results: Optional[AsyncIterable[EvaluationResults]] = None,
description: Optional[str] = None,
num_repetitions: int = 1,
upload_results: bool = True,
):
super().__init__(
experiment=experiment,
metadata=metadata,
client=client,
description=description,
)
self._data = data
self._examples: Optional[AsyncIterable[schemas.Example]] = None
self._runs = (
aitertools.ensure_async_iterator(runs) if runs is not None else None
)
self._evaluation_results = evaluation_results
self._summary_results = summary_results
self._num_repetitions = num_repetitions
self._upload_results = upload_results
async def aget_examples(self) -> AsyncIterator[schemas.Example]:
if self._examples is None:
self._examples = _aresolve_data(self._data, client=self.client)
if self._num_repetitions > 1:
self._examples = async_chain_from_iterable(
aitertools.atee(self._examples, self._num_repetitions)
)
self._examples, examples_iter = aitertools.atee(
aitertools.ensure_async_iterator(self._examples), 2, lock=asyncio.Lock()
)
return examples_iter
async def get_dataset_id(self) -> str:
if self._experiment is None or not getattr(
self._experiment, "reference_dataset_id", None
):
example = await aitertools.py_anext(await self.aget_examples())
if example is None:
raise ValueError("No examples found in the dataset.")
return str(example.dataset_id)
return str(self._experiment.reference_dataset_id)
async def aget_runs(self) -> AsyncIterator[schemas.Run]:
if self._runs is None:
raise ValueError("Runs not loaded yet.")
self._runs, runs = aitertools.atee(
aitertools.ensure_async_iterator(self._runs), 2, lock=asyncio.Lock()
)
async for run in runs:
yield run
async def aget_evaluation_results(self) -> AsyncIterator[EvaluationResults]:
if self._evaluation_results is None:
async for _ in await self.aget_examples():
yield {"results": []}
else:
self._evaluation_results, evaluation_results = aitertools.atee(
aitertools.ensure_async_iterator(self._evaluation_results),
2,
lock=asyncio.Lock(),
)
async for result in evaluation_results:
yield result
async def astart(self) -> _AsyncExperimentManager:
try:
first_example = await aitertools.py_anext(await self.aget_examples())
except StopAsyncIteration:
raise ValueError(
"No examples found in the dataset. "
"Please ensure the data provided to aevaluate is not empty."
)
if not first_example:
raise ValueError(
"No examples found in the dataset."
"Please ensure the data provided to aevaluate is not empty."
)
project = self._get_project(first_example) if self._upload_results else None
self._print_experiment_start(project, first_example)
self._metadata["num_repetitions"] = self._num_repetitions
return self.__class__(
await self.aget_examples(),
experiment=project,
metadata=self._metadata,
client=self.client,
runs=self._runs,
evaluation_results=self._evaluation_results,
upload_results=self._upload_results,
)
async def awith_predictions(
self,
target: ATARGET_T,
/,
max_concurrency: Optional[int] = None,
) -> _AsyncExperimentManager:
_experiment_results = self._apredict(target, max_concurrency=max_concurrency)
r1, r2 = aitertools.atee(_experiment_results, 2, lock=asyncio.Lock())
return _AsyncExperimentManager(
(pred["example"] async for pred in r1),
experiment=self._experiment,
metadata=self._metadata,
client=self.client,
runs=(pred["run"] async for pred in r2),
upload_results=self._upload_results,
)
async def awith_evaluators(
self,
evaluators: Sequence[Union[EVALUATOR_T, AEVALUATOR_T]],
*,
max_concurrency: Optional[int] = None,
) -> _AsyncExperimentManager:
evaluators = _resolve_evaluators(evaluators)
experiment_results = self._ascore(evaluators, max_concurrency=max_concurrency)
r1, r2, r3 = aitertools.atee(experiment_results, 3, lock=asyncio.Lock())
return _AsyncExperimentManager(
(result["example"] async for result in r1),
experiment=self._experiment,
metadata=self._metadata,
client=self.client,
runs=(result["run"] async for result in r2),
evaluation_results=(result["evaluation_results"] async for result in r3),
summary_results=self._summary_results,
upload_results=self._upload_results,
)
async def awith_summary_evaluators(
self,
summary_evaluators: Sequence[SUMMARY_EVALUATOR_T],
) -> _AsyncExperimentManager:
wrapped_evaluators = _wrap_summary_evaluators(summary_evaluators)
aggregate_feedback_gen = self._aapply_summary_evaluators(wrapped_evaluators)
return _AsyncExperimentManager(
await self.aget_examples(),
experiment=self._experiment,
metadata=self._metadata,
client=self.client,
runs=self.aget_runs(),
evaluation_results=self._evaluation_results,
summary_results=aggregate_feedback_gen,
upload_results=self._upload_results,
)
async def aget_results(self) -> AsyncIterator[ExperimentResultRow]:
async for run, example, evaluation_results in aitertools.async_zip(
self.aget_runs(), await self.aget_examples(), self.aget_evaluation_results()
):
yield ExperimentResultRow(
run=run,
example=example,
evaluation_results=evaluation_results,
)
async def aget_summary_scores(self) -> Dict[str, List[dict]]:
if self._summary_results is None:
return {"results": []}
return {
"results": [
res # type: ignore[misc]
async for results in self._summary_results
for res in results["results"]
]
}
## Private methods
async def _apredict(
self, target: ATARGET_T, /, max_concurrency: Optional[int] = None
) -> AsyncIterator[_ForwardResults]:
fn = _ensure_async_traceable(target)
async def predict_all():
async for example in await self.aget_examples():
# Yield the coroutine to be awaited later
yield _aforward(
fn, example, self.experiment_name, self._metadata, self.client
)
async for result in aitertools.aiter_with_concurrency(
max_concurrency, predict_all(), _eager_consumption_timeout=0.001
):
yield result
await self._aend()
async def _ascore(
self,
evaluators: Sequence[RunEvaluator],
max_concurrency: Optional[int] = None,
) -> AsyncIterator[ExperimentResultRow]:
with cf.ThreadPoolExecutor(max_workers=4) as executor:
async def score_all():
async for current_results in self.aget_results():
# Yield the coroutine to be awaited later in aiter_with_concurrency
yield self._arun_evaluators(
evaluators, current_results, executor=executor
)
async for result in aitertools.aiter_with_concurrency(
max_concurrency, score_all(), _eager_consumption_timeout=0.001
):
yield result
async def _arun_evaluators(
self,
evaluators: Sequence[RunEvaluator],
current_results: ExperimentResultRow,
executor: cf.ThreadPoolExecutor,
) -> ExperimentResultRow:
current_context = rh.get_tracing_context()
metadata = {
**(current_context["metadata"] or {}),
**{"experiment": self.experiment_name},
}
with rh.tracing_context(
**{
**current_context,
"project_name": "evaluators",
"metadata": metadata,
"enabled": "local" if not self._upload_results else True,
"client": self.client,
}
):
run = current_results["run"]
example = current_results["example"]
eval_results = current_results["evaluation_results"]
for evaluator in evaluators:
try:
evaluator_response = await evaluator.aevaluate_run(
run=run,
example=example,
)
eval_results["results"].extend(
self.client._select_eval_results(evaluator_response)
)
if self._upload_results:
self.client._log_evaluation_feedback(
evaluator_response, run=run, _executor=executor
)
except Exception as e:
try:
feedback_keys = _extract_feedback_keys(evaluator)
error_response = EvaluationResults(
results=[
EvaluationResult(
key=key,
source_run_id=run.id,
comment=repr(e),
extra={"error": True},
)
for key in feedback_keys
]
)
eval_results["results"].extend(
self.client._select_eval_results(error_response)
)
if self._upload_results:
self.client._log_evaluation_feedback(
error_response, run=run, _executor=executor
)
except Exception as e2:
logger.debug(f"Error parsing feedback keys: {e2}")
pass
logger.error(
f"Error running evaluator {repr(evaluator)} on"
f" run {run.id}: {repr(e)}",
exc_info=True,
)
logger.error(
f"Error running evaluator {repr(evaluator)} on"
f" run {run.id}: {repr(e)}",
exc_info=True,
)
return ExperimentResultRow(
run=run,
example=example,
evaluation_results=eval_results,
)
async def _aapply_summary_evaluators(
self, summary_evaluators: Sequence[SUMMARY_EVALUATOR_T]
) -> AsyncIterator[EvaluationResults]:
runs, examples = [], []
async_examples = aitertools.ensure_async_iterator(await self.aget_examples())
async for run, example in aitertools.async_zip(
self.aget_runs(), async_examples
):
runs.append(run)
examples.append(example)
aggregate_feedback = []
project_id = self._get_experiment().id if self._upload_results else None
current_context = rh.get_tracing_context()
metadata = {
**(current_context["metadata"] or {}),
**{
"experiment": self.experiment_name,
"experiment_id": project_id,
},
}
with rh.tracing_context(
**{
**current_context,
"project_name": "evaluators",
"metadata": metadata,
"enabled": "local" if not self._upload_results else True,
"client": self.client,
}
):
for evaluator in summary_evaluators:
try:
summary_eval_result = evaluator(runs, examples)
flattened_results = self.client._select_eval_results(
summary_eval_result,
fn_name=evaluator.__name__,
)
aggregate_feedback.extend(flattened_results)
if self._upload_results:
for result in flattened_results:
feedback = result.dict(exclude={"target_run_id"})
evaluator_info = feedback.pop("evaluator_info", None)
await aitertools.aio_to_thread(
self.client.create_feedback,
**feedback,
run_id=None,
project_id=project_id,
source_info=evaluator_info,
)
except Exception as e:
logger.error(
f"Error running summary evaluator {repr(evaluator)}: {e}",
exc_info=True,
)
yield {"results": aggregate_feedback}
async def _get_dataset_version(self) -> Optional[str]:
modified_at = []
async for example in await self.aget_examples():
if example.modified_at:
# Should always be defined in practice when fetched,
# but the typing permits None
modified_at.append(example.modified_at)
max_modified_at = max(modified_at) if modified_at else None
return max_modified_at.isoformat() if max_modified_at else None
async def _get_dataset_splits(self) -> Optional[list[str]]:
splits = set()
async for example in await self.aget_examples():
if (
example.metadata
and example.metadata.get("dataset_split")
and isinstance(example.metadata["dataset_split"], list)
):
for split in example.metadata["dataset_split"]:
if isinstance(split, str):
splits.add(split)
else:
splits.add("base")
return list(splits)
async def _aend(self) -> None:
if not self._upload_results:
return
experiment = self._experiment
if experiment is None:
raise ValueError("Experiment not started yet.")
project_metadata = self._get_experiment_metadata()
project_metadata["dataset_version"] = await self._get_dataset_version()
project_metadata["dataset_splits"] = await self._get_dataset_splits()
self.client.update_project(
experiment.id,
end_time=experiment.end_time
or datetime.datetime.now(datetime.timezone.utc),
metadata={
**experiment.metadata,
**project_metadata,
},
)
[docs]class AsyncExperimentResults:
[docs] def __init__(
self,
experiment_manager: _AsyncExperimentManager,
):
self._manager = experiment_manager
self._results: List[ExperimentResultRow] = []
self._lock = asyncio.Lock()
self._task = asyncio.create_task(self._process_data(self._manager))
self._processed_count = 0
@property
def experiment_name(self) -> str:
return self._manager.experiment_name
def __aiter__(self) -> AsyncIterator[ExperimentResultRow]:
return self
async def __anext__(self) -> ExperimentResultRow:
async def _wait_until_index(index: int) -> None:
while self._processed_count < index:
await asyncio.sleep(0.05)
while True:
async with self._lock:
if self._processed_count < len(self._results):
result = self._results[self._processed_count]
self._processed_count += 1
return result
elif self._task.done():
raise StopAsyncIteration
await asyncio.shield(
asyncio.wait_for(_wait_until_index(len(self._results)), timeout=None)
)
async def _process_data(self, manager: _AsyncExperimentManager) -> None:
tqdm = _load_tqdm()
async for item in tqdm(manager.aget_results()):
async with self._lock:
self._results.append(item)
summary_scores = await manager.aget_summary_scores()
async with self._lock:
self._summary_results = summary_scores
[docs] def to_pandas(
self, start: Optional[int] = 0, end: Optional[int] = None
) -> DataFrame:
return _to_pandas(self._results, start=start, end=end)
def _repr_html_(self) -> str:
import importlib.util
if self._results and importlib.util.find_spec("pandas"):
df = self.to_pandas(0, 5)
return df._repr_html_() # type: ignore[operator]
else:
return self.__repr__()
def __len__(self) -> int:
return len(self._results)
def __repr__(self) -> str:
return f"<AsyncExperimentResults {self.experiment_name}>"
[docs] async def wait(self) -> None:
await self._task
async def _aforward(
fn: rh.SupportsLangsmithExtra[[dict], Awaitable],
example: schemas.Example,
experiment_name: str,
metadata: dict,
client: langsmith.Client,
) -> _ForwardResults:
run: Optional[schemas.RunBase] = None
def _get_run(r: run_trees.RunTree) -> None:
nonlocal run
run = r
with rh.tracing_context(enabled=True):
try:
await fn(
example.inputs,
langsmith_extra=rh.LangSmithExtra(
reference_example_id=example.id,
on_end=_get_run,
project_name=experiment_name,
metadata={
**metadata,
"example_version": (
example.modified_at.isoformat()
if example.modified_at
else example.created_at.isoformat()
),
},
client=client,
),
)
except Exception as e:
logger.error(
f"Error running target function: {e}", exc_info=True, stacklevel=1
)
return _ForwardResults(
run=cast(schemas.Run, run),
example=example,
)
def _ensure_async_traceable(
target: ATARGET_T,
) -> rh.SupportsLangsmithExtra[[dict], Awaitable]:
if not asyncio.iscoroutinefunction(target) and not _is_langchain_runnable(target):
if callable(target):
raise ValueError(
"Target must be an async function. For sync functions, use evaluate."
" Example usage:\n\n"
"async def predict(inputs: dict) -> dict:\n"
" # do work, like chain.invoke(inputs)\n"
" return {...}\n"
"await aevaluate(predict, ...)"
)
else:
raise ValueError(
"Target must be a callable async function. "
"Received a non-callable object. Example usage:\n\n"
"async def predict(inputs: dict) -> dict:\n"
" # do work, like chain.invoke(inputs)\n"
" return {...}\n"
"await aevaluate(predict, ...)"
)
if rh.is_traceable_function(target):
return target # type: ignore
else:
if _is_langchain_runnable(target):
target = target.ainvoke # type: ignore[attr-defined]
return rh.traceable(name="AsyncTarget")(target)
def _aresolve_data(
data: Union[DATA_T, AsyncIterable[schemas.Example]], *, client: langsmith.Client
) -> AsyncIterator[schemas.Example]:
"""Return the examples for the given dataset."""
if isinstance(data, AsyncIterable):
return aitertools.ensure_async_iterator(data)
return aitertools.ensure_async_iterator(_resolve_data(data, client=client))
T = TypeVar("T")
[docs]async def async_chain_from_iterable(
iterable: Iterable[AsyncIterable[T]],
) -> AsyncIterator[T]:
"""Chain multiple async iterables."""
for sub_iterable in iterable:
async for item in sub_iterable:
yield item