"""Schemas for the LangSmith API."""
from __future__ import annotations
from datetime import datetime, timedelta, timezone
from decimal import Decimal
from enum import Enum
from typing import (
Any,
Dict,
List,
NamedTuple,
Optional,
Protocol,
Tuple,
Union,
runtime_checkable,
)
from uuid import UUID
from typing_extensions import NotRequired, TypedDict
try:
from pydantic.v1 import (
BaseModel,
Field, # type: ignore[import]
PrivateAttr,
StrictBool,
StrictFloat,
StrictInt,
)
except ImportError:
from pydantic import ( # type: ignore[assignment]
BaseModel,
Field,
PrivateAttr,
StrictBool,
StrictFloat,
StrictInt,
)
from typing_extensions import Literal
SCORE_TYPE = Union[StrictBool, StrictInt, StrictFloat, None]
VALUE_TYPE = Union[Dict, str, None]
[docs]class Attachment(NamedTuple):
"""Annotated type that will be stored as an attachment if used.
Examples:
--------
.. code-block:: python
@traceable
def my_function(bar: int, my_val: Attachment):
# my_val will be stored as an attachment
# bar will be stored as inputs
return bar
"""
mime_type: str
data: bytes
Attachments = Dict[str, Union[Tuple[str, bytes], Attachment]]
"""Attachments associated with the run. Each entry is a tuple of (mime_type, bytes)."""
[docs]class ExampleBase(BaseModel):
"""Example base model."""
dataset_id: UUID
inputs: Dict[str, Any] = Field(default_factory=dict)
outputs: Optional[Dict[str, Any]] = Field(default=None)
metadata: Optional[Dict[str, Any]] = Field(default=None)
class Config:
"""Configuration class for the schema."""
frozen = True
[docs]class ExampleCreate(ExampleBase):
"""Example create model."""
id: Optional[UUID]
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
split: Optional[Union[str, List[str]]] = None
[docs]class Example(ExampleBase):
"""Example model."""
id: UUID
created_at: datetime = Field(
default_factory=lambda: datetime.fromtimestamp(0, tz=timezone.utc)
)
dataset_id: UUID = Field(default=UUID("00000000-0000-0000-0000-000000000000"))
modified_at: Optional[datetime] = Field(default=None)
runs: List[Run] = Field(default_factory=list)
source_run_id: Optional[UUID] = None
_host_url: Optional[str] = PrivateAttr(default=None)
_tenant_id: Optional[UUID] = PrivateAttr(default=None)
def __init__(
self,
_host_url: Optional[str] = None,
_tenant_id: Optional[UUID] = None,
**kwargs: Any,
) -> None:
"""Initialize a Dataset object."""
super().__init__(**kwargs)
self._host_url = _host_url
self._tenant_id = _tenant_id
@property
def url(self) -> Optional[str]:
"""URL of this run within the app."""
if self._host_url:
path = f"/datasets/{self.dataset_id}/e/{self.id}"
if self._tenant_id:
return f"{self._host_url}/o/{str(self._tenant_id)}{path}"
return f"{self._host_url}{path}"
return None
def __repr__(self):
"""Return a string representation of the RunBase object."""
return f"{self.__class__}(id={self.id}, dataset_id={self.dataset_id}, link='{self.url}')"
[docs]class ExampleSearch(ExampleBase):
"""Example returned via search."""
id: UUID
[docs]class ExampleUpdate(BaseModel):
"""Update class for Example."""
dataset_id: Optional[UUID] = None
inputs: Optional[Dict[str, Any]] = None
outputs: Optional[Dict[str, Any]] = None
metadata: Optional[Dict[str, Any]] = None
split: Optional[Union[str, List[str]]] = None
class Config:
"""Configuration class for the schema."""
frozen = True
[docs]class DataType(str, Enum):
"""Enum for dataset data types."""
kv = "kv"
llm = "llm"
chat = "chat"
[docs]class DatasetBase(BaseModel):
"""Dataset base model."""
name: str
description: Optional[str] = None
data_type: Optional[DataType] = None
class Config:
"""Configuration class for the schema."""
frozen = True
[docs]class Dataset(DatasetBase):
"""Dataset ORM model."""
id: UUID
created_at: datetime
modified_at: Optional[datetime] = Field(default=None)
example_count: Optional[int] = None
session_count: Optional[int] = None
last_session_start_time: Optional[datetime] = None
inputs_schema: Optional[Dict[str, Any]] = None
outputs_schema: Optional[Dict[str, Any]] = None
_host_url: Optional[str] = PrivateAttr(default=None)
_tenant_id: Optional[UUID] = PrivateAttr(default=None)
_public_path: Optional[str] = PrivateAttr(default=None)
def __init__(
self,
_host_url: Optional[str] = None,
_tenant_id: Optional[UUID] = None,
_public_path: Optional[str] = None,
**kwargs: Any,
) -> None:
"""Initialize a Dataset object."""
if "inputs_schema_definition" in kwargs:
kwargs["inputs_schema"] = kwargs.pop("inputs_schema_definition")
if "outputs_schema_definition" in kwargs:
kwargs["outputs_schema"] = kwargs.pop("outputs_schema_definition")
super().__init__(**kwargs)
self._host_url = _host_url
self._tenant_id = _tenant_id
self._public_path = _public_path
@property
def url(self) -> Optional[str]:
"""URL of this run within the app."""
if self._host_url:
if self._public_path:
return f"{self._host_url}{self._public_path}"
if self._tenant_id:
return f"{self._host_url}/o/{str(self._tenant_id)}/datasets/{self.id}"
return f"{self._host_url}/datasets/{self.id}"
return None
[docs]class DatasetVersion(BaseModel):
"""Class representing a dataset version."""
tags: Optional[List[str]] = None
as_of: datetime
def _default_extra():
return {"metadata": {}}
[docs]class RunBase(BaseModel):
"""Base Run schema.
A Run is a span representing a single unit of work or operation within your LLM app.
This could be a single call to an LLM or chain, to a prompt formatting call,
to a runnable lambda invocation. If you are familiar with OpenTelemetry,
you can think of a run as a span.
"""
id: UUID
"""Unique identifier for the run."""
name: str
"""Human-readable name for the run."""
start_time: datetime
"""Start time of the run."""
run_type: str
"""The type of run, such as tool, chain, llm, retriever,
embedding, prompt, parser."""
end_time: Optional[datetime] = None
"""End time of the run, if applicable."""
extra: Optional[dict] = Field(default_factory=_default_extra)
"""Additional metadata or settings related to the run."""
error: Optional[str] = None
"""Error message, if the run encountered any issues."""
serialized: Optional[dict] = None
"""Serialized object that executed the run for potential reuse."""
events: Optional[List[Dict]] = None
"""List of events associated with the run, like
start and end events."""
inputs: dict = Field(default_factory=dict)
"""Inputs used for the run."""
outputs: Optional[dict] = None
"""Outputs generated by the run, if any."""
reference_example_id: Optional[UUID] = None
"""Reference to an example that this run may be based on."""
parent_run_id: Optional[UUID] = None
"""Identifier for a parent run, if this run is a sub-run."""
tags: Optional[List[str]] = None
"""Tags for categorizing or annotating the run."""
attachments: Attachments = Field(default_factory=dict)
"""Attachments associated with the run.
Each entry is a tuple of (mime_type, bytes)."""
@property
def metadata(self) -> dict[str, Any]:
"""Retrieve the metadata (if any)."""
if self.extra is None:
self.extra = {}
return self.extra.setdefault("metadata", {})
@property
def revision_id(self) -> Optional[UUID]:
"""Retrieve the revision ID (if any)."""
return self.metadata.get("revision_id")
def __repr__(self):
"""Return a string representation of the RunBase object."""
return f"{self.__class__}(id={self.id}, name='{self.name}', run_type='{self.run_type}')"
[docs]class Run(RunBase):
"""Run schema when loading from the DB."""
session_id: Optional[UUID] = None
"""The project ID this run belongs to."""
child_run_ids: Optional[List[UUID]] = None
"""The child run IDs of this run."""
child_runs: Optional[List[Run]] = None
"""The child runs of this run, if instructed to load using the client
These are not populated by default, as it is a heavier query to make."""
feedback_stats: Optional[Dict[str, Any]] = None
"""Feedback stats for this run."""
app_path: Optional[str] = None
"""Relative URL path of this run within the app."""
manifest_id: Optional[UUID] = None
"""Unique ID of the serialized object for this run."""
status: Optional[str] = None
"""Status of the run (e.g., 'success')."""
prompt_tokens: Optional[int] = None
"""Number of tokens used for the prompt."""
completion_tokens: Optional[int] = None
"""Number of tokens generated as output."""
total_tokens: Optional[int] = None
"""Total tokens for prompt and completion."""
first_token_time: Optional[datetime] = None
"""Time the first token was processed."""
total_cost: Optional[Decimal] = None
"""The total estimated LLM cost associated with the completion tokens."""
prompt_cost: Optional[Decimal] = None
"""The estimated cost associated with the prompt (input) tokens."""
completion_cost: Optional[Decimal] = None
"""The estimated cost associated with the completion tokens."""
parent_run_ids: Optional[List[UUID]] = None
"""List of parent run IDs."""
trace_id: UUID
"""Unique ID assigned to every run within this nested trace."""
dotted_order: str = Field(default="")
"""Dotted order for the run.
This is a string composed of {time}{run-uuid}.* so that a trace can be
sorted in the order it was executed.
Example:
- Parent: 20230914T223155647Z1b64098b-4ab7-43f6-afee-992304f198d8
- Children:
- 20230914T223155647Z1b64098b-4ab7-43f6-afee-992304f198d8.20230914T223155649Z809ed3a2-0172-4f4d-8a02-a64e9b7a0f8a
- 20230915T223155647Z1b64098b-4ab7-43f6-afee-992304f198d8.20230914T223155650Zc8d9f4c5-6c5a-4b2d-9b1c-3d9d7a7c5c7c
""" # noqa: E501
in_dataset: Optional[bool] = None
"""Whether this run is in a dataset."""
_host_url: Optional[str] = PrivateAttr(default=None)
def __init__(self, _host_url: Optional[str] = None, **kwargs: Any) -> None:
"""Initialize a Run object."""
if not kwargs.get("trace_id"):
kwargs = {"trace_id": kwargs.get("id"), **kwargs}
inputs = kwargs.pop("inputs", None) or {}
super().__init__(**kwargs, inputs=inputs)
self._host_url = _host_url
if not self.dotted_order.strip() and not self.parent_run_id:
self.dotted_order = f"{self.start_time.isoformat()}{self.id}"
@property
def url(self) -> Optional[str]:
"""URL of this run within the app."""
if self._host_url and self.app_path:
return f"{self._host_url}{self.app_path}"
return None
class RunTypeEnum(str, Enum):
"""(Deprecated) Enum for run types. Use string directly."""
tool = "tool"
chain = "chain"
llm = "llm"
retriever = "retriever"
embedding = "embedding"
prompt = "prompt"
parser = "parser"
class RunLikeDict(TypedDict, total=False):
"""Run-like dictionary, for type-hinting."""
name: str
run_type: RunTypeEnum
start_time: datetime
inputs: Optional[dict]
outputs: Optional[dict]
end_time: Optional[datetime]
extra: Optional[dict]
error: Optional[str]
serialized: Optional[dict]
parent_run_id: Optional[UUID]
manifest_id: Optional[UUID]
events: Optional[List[dict]]
tags: Optional[List[str]]
inputs_s3_urls: Optional[dict]
outputs_s3_urls: Optional[dict]
id: Optional[UUID]
session_id: Optional[UUID]
session_name: Optional[str]
reference_example_id: Optional[UUID]
input_attachments: Optional[dict]
output_attachments: Optional[dict]
trace_id: UUID
dotted_order: str
attachments: Attachments
[docs]class RunWithAnnotationQueueInfo(RunBase):
"""Run schema with annotation queue info."""
last_reviewed_time: Optional[datetime] = None
"""The last time this run was reviewed."""
added_at: Optional[datetime] = None
"""The time this run was added to the queue."""
[docs]class FeedbackSourceBase(BaseModel):
"""Base class for feedback sources.
This represents whether feedback is submitted from the API, model, human labeler,
etc.
"""
type: str
"""The type of the feedback source."""
metadata: Optional[Dict[str, Any]] = Field(default_factory=dict)
"""Additional metadata for the feedback source."""
[docs]class APIFeedbackSource(FeedbackSourceBase):
"""API feedback source."""
type: Literal["api"] = "api"
[docs]class ModelFeedbackSource(FeedbackSourceBase):
"""Model feedback source."""
type: Literal["model"] = "model"
[docs]class FeedbackSourceType(Enum):
"""Feedback source type."""
API = "api"
"""General feedback submitted from the API."""
MODEL = "model"
"""Model-assisted feedback."""
[docs]class FeedbackBase(BaseModel):
"""Feedback schema."""
id: UUID
"""The unique ID of the feedback."""
created_at: Optional[datetime] = None
"""The time the feedback was created."""
modified_at: Optional[datetime] = None
"""The time the feedback was last modified."""
run_id: Optional[UUID]
"""The associated run ID this feedback is logged for."""
trace_id: Optional[UUID]
"""The associated trace ID this feedback is logged for."""
key: str
"""The metric name, tag, or aspect to provide feedback on."""
score: SCORE_TYPE = None
"""Value or score to assign the run."""
value: VALUE_TYPE = None
"""The display value, tag or other value for the feedback if not a metric."""
comment: Optional[str] = None
"""Comment or explanation for the feedback."""
correction: Union[str, dict, None] = None
"""Correction for the run."""
feedback_source: Optional[FeedbackSourceBase] = None
"""The source of the feedback."""
session_id: Optional[UUID] = None
"""The associated project ID (Session = Project) this feedback is logged for."""
comparative_experiment_id: Optional[UUID] = None
"""If logged within a 'comparative experiment', this is the ID of the experiment."""
feedback_group_id: Optional[UUID] = None
"""For preference scoring, this group ID is shared across feedbacks for each
run in the group that was being compared."""
extra: Optional[Dict] = None
"""The metadata of the feedback."""
class Config:
"""Configuration class for the schema."""
frozen = True
[docs]class FeedbackCategory(TypedDict, total=False):
"""Specific value and label pair for feedback."""
value: float
"""The numeric value associated with this feedback category."""
label: Optional[str]
"""An optional label to interpret the value for this feedback category."""
[docs]class FeedbackConfig(TypedDict, total=False):
"""Represents _how_ a feedback value ought to be interpreted."""
type: Literal["continuous", "categorical", "freeform"]
"""The type of feedback."""
min: Optional[float]
"""The minimum value for continuous feedback."""
max: Optional[float]
"""The maximum value for continuous feedback."""
categories: Optional[List[FeedbackCategory]]
"""If feedback is categorical, this defines the valid categories the server will accept.
Not applicable to continuous or freeform feedback types.""" # noqa
[docs]class FeedbackCreate(FeedbackBase):
"""Schema used for creating feedback."""
feedback_source: FeedbackSourceBase
"""The source of the feedback."""
feedback_config: Optional[FeedbackConfig] = None
[docs]class Feedback(FeedbackBase):
"""Schema for getting feedback."""
id: UUID
created_at: datetime
"""The time the feedback was created."""
modified_at: datetime
"""The time the feedback was last modified."""
feedback_source: Optional[FeedbackSourceBase] = None
"""The source of the feedback. In this case"""
[docs]class TracerSession(BaseModel):
"""TracerSession schema for the API.
Sessions are also referred to as "Projects" in the UI.
"""
id: UUID
"""The ID of the project."""
start_time: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
"""The time the project was created."""
end_time: Optional[datetime] = None
"""The time the project was ended."""
description: Optional[str] = None
"""The description of the project."""
name: Optional[str] = None
"""The name of the session."""
extra: Optional[Dict[str, Any]] = None
"""Extra metadata for the project."""
tenant_id: UUID
"""The tenant ID this project belongs to."""
reference_dataset_id: Optional[UUID]
"""The reference dataset IDs this project's runs were generated on."""
_host_url: Optional[str] = PrivateAttr(default=None)
def __init__(self, _host_url: Optional[str] = None, **kwargs: Any) -> None:
"""Initialize a Run object."""
super().__init__(**kwargs)
self._host_url = _host_url
if self.start_time.tzinfo is None:
self.start_time = self.start_time.replace(tzinfo=timezone.utc)
@property
def url(self) -> Optional[str]:
"""URL of this run within the app."""
if self._host_url:
return f"{self._host_url}/o/{self.tenant_id}/projects/p/{self.id}"
return None
@property
def metadata(self) -> dict[str, Any]:
"""Retrieve the metadata (if any)."""
if self.extra is None or "metadata" not in self.extra:
return {}
return self.extra["metadata"]
@property
def tags(self) -> List[str]:
"""Retrieve the tags (if any)."""
if self.extra is None or "tags" not in self.extra:
return []
return self.extra["tags"]
[docs]class TracerSessionResult(TracerSession):
"""A project, hydrated with additional information.
Sessions are also referred to as "Projects" in the UI.
"""
run_count: Optional[int]
"""The number of runs in the project."""
latency_p50: Optional[timedelta]
"""The median (50th percentile) latency for the project."""
latency_p99: Optional[timedelta]
"""The 99th percentile latency for the project."""
total_tokens: Optional[int]
"""The total number of tokens consumed in the project."""
prompt_tokens: Optional[int]
"""The total number of prompt tokens consumed in the project."""
completion_tokens: Optional[int]
"""The total number of completion tokens consumed in the project."""
last_run_start_time: Optional[datetime]
"""The start time of the last run in the project."""
feedback_stats: Optional[Dict[str, Any]]
"""Feedback stats for the project."""
run_facets: Optional[List[Dict[str, Any]]]
"""Facets for the runs in the project."""
total_cost: Optional[Decimal]
"""The total estimated LLM cost associated with the completion tokens."""
prompt_cost: Optional[Decimal]
"""The estimated cost associated with the prompt (input) tokens."""
completion_cost: Optional[Decimal]
"""The estimated cost associated with the completion tokens."""
first_token_p50: Optional[timedelta]
"""The median (50th percentile) time to process the first token."""
first_token_p99: Optional[timedelta]
"""The 99th percentile time to process the first token."""
error_rate: Optional[float]
"""The error rate for the project."""
@runtime_checkable
class BaseMessageLike(Protocol):
"""A protocol representing objects similar to BaseMessage."""
content: str
"""The content of the message."""
additional_kwargs: Dict[Any, Any]
"""Additional keyword arguments associated with the message."""
@property
def type(self) -> str:
"""Type of the Message, used for serialization."""
[docs]class DatasetShareSchema(TypedDict, total=False):
"""Represents the schema for a dataset share."""
dataset_id: UUID
"""The ID of the dataset."""
share_token: UUID
"""The token for sharing the dataset."""
url: str
"""The URL of the shared dataset."""
[docs]class AnnotationQueue(BaseModel):
"""Represents an annotation queue."""
id: UUID
"""The unique identifier of the annotation queue."""
name: str
"""The name of the annotation queue."""
description: Optional[str] = None
"""An optional description of the annotation queue."""
created_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
"""The timestamp when the annotation queue was created."""
updated_at: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))
"""The timestamp when the annotation queue was last updated."""
tenant_id: UUID
"""The ID of the tenant associated with the annotation queue."""
[docs]class BatchIngestConfig(TypedDict, total=False):
"""Configuration for batch ingestion."""
use_multipart_endpoint: bool
"""Whether to use the multipart endpoint for batch ingestion."""
scale_up_qsize_trigger: int
"""The queue size threshold that triggers scaling up."""
scale_up_nthreads_limit: int
"""The maximum number of threads to scale up to."""
scale_down_nempty_trigger: int
"""The number of empty threads that triggers scaling down."""
size_limit: int
"""The maximum size limit for the batch."""
size_limit_bytes: Optional[int]
"""The maximum size limit in bytes for the batch."""
[docs]class LangSmithInfo(BaseModel):
"""Information about the LangSmith server."""
version: str = ""
"""The version of the LangSmith server."""
license_expiration_time: Optional[datetime] = None
"""The time the license will expire."""
batch_ingest_config: Optional[BatchIngestConfig] = None
Example.update_forward_refs()
[docs]class LangSmithSettings(BaseModel):
"""Settings for the LangSmith tenant."""
id: str
"""The ID of the tenant."""
display_name: str
"""The display name of the tenant."""
created_at: datetime
"""The creation time of the tenant."""
tenant_handle: Optional[str] = None
[docs]class FeedbackIngestToken(BaseModel):
"""Represents the schema for a feedback ingest token."""
id: UUID
"""The ID of the feedback ingest token."""
url: str
"""The URL to GET when logging the feedback."""
expires_at: datetime
"""The expiration time of the token."""
[docs]class RunEvent(TypedDict, total=False):
"""Run event schema."""
name: str
"""Type of event."""
time: Union[datetime, str]
"""Time of the event."""
kwargs: Optional[Dict[str, Any]]
"""Additional metadata for the event."""
[docs]class DatasetDiffInfo(BaseModel):
"""Represents the difference information between two datasets."""
examples_modified: List[UUID]
"""A list of UUIDs representing the modified examples."""
examples_added: List[UUID]
"""A list of UUIDs representing the added examples."""
examples_removed: List[UUID]
"""A list of UUIDs representing the removed examples."""
[docs]class ComparativeExperiment(BaseModel):
"""Represents a comparative experiment.
This information summarizes evaluation results comparing
two or more models on a given dataset.
"""
id: UUID
"""The unique identifier for the comparative experiment."""
name: Optional[str] = None
"""The optional name of the comparative experiment."""
description: Optional[str] = None
"""An optional description of the comparative experiment."""
tenant_id: UUID
"""The identifier of the tenant associated with this experiment."""
created_at: datetime
"""The timestamp when the comparative experiment was created."""
modified_at: datetime
"""The timestamp when the comparative experiment was last modified."""
reference_dataset_id: UUID
"""The identifier of the reference dataset used in this experiment."""
extra: Optional[Dict[str, Any]] = None
"""Optional additional information about the experiment."""
experiments_info: Optional[List[dict]] = None
"""Optional list of dictionaries containing information about individual experiments."""
feedback_stats: Optional[Dict[str, Any]] = None
"""Optional dictionary containing feedback statistics for the experiment."""
@property
def metadata(self) -> dict[str, Any]:
"""Retrieve the metadata (if any)."""
if self.extra is None or "metadata" not in self.extra:
return {}
return self.extra["metadata"]
[docs]class PromptCommit(BaseModel):
"""Represents a Prompt with a manifest."""
owner: str
"""The handle of the owner of the prompt."""
repo: str
"""The name of the prompt."""
commit_hash: str
"""The commit hash of the prompt."""
manifest: Dict[str, Any]
"""The manifest of the prompt."""
examples: List[dict]
"""The list of examples."""
[docs]class ListedPromptCommit(BaseModel):
"""Represents a listed prompt commit with associated metadata."""
id: UUID
"""The unique identifier for the prompt commit."""
owner: str
"""The owner of the prompt commit."""
repo: str
"""The repository name of the prompt commit."""
manifest_id: Optional[UUID] = None
"""The optional identifier for the manifest associated with this commit."""
repo_id: Optional[UUID] = None
"""The optional identifier for the repository."""
parent_id: Optional[UUID] = None
"""The optional identifier for the parent commit."""
commit_hash: Optional[str] = None
"""The optional hash of the commit."""
created_at: Optional[datetime] = None
"""The optional timestamp when the commit was created."""
updated_at: Optional[datetime] = None
"""The optional timestamp when the commit was last updated."""
example_run_ids: Optional[List[UUID]] = Field(default_factory=list)
"""A list of example run identifiers associated with this commit."""
num_downloads: Optional[int] = 0
"""The number of times this commit has been downloaded."""
num_views: Optional[int] = 0
"""The number of times this commit has been viewed."""
parent_commit_hash: Optional[str] = None
"""The optional hash of the parent commit."""
[docs]class Prompt(BaseModel):
"""Represents a Prompt with metadata."""
repo_handle: str
"""The name of the prompt."""
description: Optional[str] = None
"""The description of the prompt."""
readme: Optional[str] = None
"""The README of the prompt."""
id: str
"""The ID of the prompt."""
tenant_id: str
"""The tenant ID of the prompt owner."""
created_at: datetime
"""The creation time of the prompt."""
updated_at: datetime
"""The last update time of the prompt."""
is_public: bool
"""Whether the prompt is public."""
is_archived: bool
"""Whether the prompt is archived."""
tags: List[str]
"""The tags associated with the prompt."""
original_repo_id: Optional[str] = None
"""The ID of the original prompt, if forked."""
upstream_repo_id: Optional[str] = None
"""The ID of the upstream prompt, if forked."""
owner: Optional[str]
"""The handle of the owner of the prompt."""
full_name: str
"""The full name of the prompt. (owner + repo_handle)"""
num_likes: int
"""The number of likes."""
num_downloads: int
"""The number of downloads."""
num_views: int
"""The number of views."""
liked_by_auth_user: Optional[bool] = None
"""Whether the prompt is liked by the authenticated user."""
last_commit_hash: Optional[str] = None
"""The hash of the last commit."""
num_commits: int
"""The number of commits."""
original_repo_full_name: Optional[str] = None
"""The full name of the original prompt, if forked."""
upstream_repo_full_name: Optional[str] = None
"""The full name of the upstream prompt, if forked."""
[docs]class ListPromptsResponse(BaseModel):
"""A list of prompts with metadata."""
repos: List[Prompt]
"""The list of prompts."""
total: int
"""The total number of prompts."""
[docs]class PromptSortField(str, Enum):
"""Enum for sorting fields for prompts."""
num_downloads = "num_downloads"
"""Number of downloads."""
num_views = "num_views"
"""Number of views."""
updated_at = "updated_at"
"""Last updated time."""
num_likes = "num_likes"
"""Number of likes."""
[docs]class OutputTokenDetails(TypedDict, total=False):
"""Breakdown of output token counts.
Does *not* need to sum to full output token count. Does *not* need to have all keys.
"""
audio: int
"""Audio output tokens."""
reasoning: int
"""Reasoning output tokens.
Tokens generated by the model in a chain of thought process (i.e. by OpenAI's o1
models) that are not returned as part of model output.
"""